
Example lab report 10/23/2013 Page 1

Refining the Sieve of Eratosthenes

Demo Student

Objective

The purpose of the objective is to define the

objective of the work being accomplished.

Example: The objective of this assignment

was to have the students learn how to apply

timing improvements to a program by

identifying key code in the program to be

refined and modified based on the computer

architecture and techniques for parallelism.

Methodology

This section defines the methodology being

used as a part of the lab. It should contain

pertinent facts such as languages, machines,

etc.

Example: The program being implemented

and refined was the Sieve of Eratosthenes –

a method for identifying prime numbers

invented by the Greek mathematician

Eratosthenes. This was accomplished by

marking all the multiples of the primes up to

√N in each processors address space -

anything unmarked when finished is

considered a prime number. Once the initial

program is implemented as a parallel

program, three techniques are applied. The

first is to have each of the processors

implement the discovery of the primes less

than √N by themselves. The second is to

identify all the prime multiples within a

block-size before moving on the next block.

The last is to only mark the odd primes since

all the even numbers greater than 2 are

multiples of 2.

The MPI tool chain was used for

parallelization and communication between

the processes. The initial implementation

and each of the improvements was run 10

times on the CoGrid machine with the

results being averaged and the outliers

removed. These results are then plotted

using gnuplot and the corresponding

functions identified using the fit function.



Hypothesis

What hypothesis did you approach the

problem with?

Example: The hypothesis is that the

computation time necessary to perform the

calculation of the primes will increase

linearly as N increases. In addition, that

applying each of the changes to the

computation defined in the methodology

will provide a quantifiable increase to the

timing of the program based on the mapping

of the computations to the architecture and

to the parallelization as the number of

processors increases.

Summary of Results

The results showed the hypothesis that the

execution time necessary increased on a

linear basis as N increased was correct and

having the computation done in a parallel

manner decreased the computational time

based on a definable equation. Each of the

improvements provides a quantifiable

decrease in execution time resulting in a

computational time using the final version

that is 13.3% of the time of the first version.

Example lab report 10/23/2013 Page 2

Discussion

Here you put the facts behind your

conclusions.

Results of each of the improvements

as N increases using logscale

Programming the model

The first program implemented the basic

algorithm by increasing N to a multiple of P

and assigning N/P memory locations to each

of the processors. This was done instead of

using a balanced assignment – I’ve added a

discussion of this in a later section.

Processor 0 was assigned the task of

identifying the seed primes and

communicating them to the other processors

for marking. The processors then marked

each of the multiples of the prime within

their address space. Once all the primes

below √N had their multiples marked, the

sums were reduced to processor 0 to provide

the total. Running the timing measurements

with P = 1, graphing them, and using the fit

function within gnuplot provided the

function:

f(x) = 6.0 e
-7

 * x

The first improvement assumes that the

price of communicating each of the initial

set of primes from processor 0 to the other

processors is higher than the price of having

each of the processors compute those primes

themselves. As you can see from the above

graph, this indeed is the case – eliminating

the communication of each of the initial

primes improved the timing with P=1 to:

f(x) = 4.9 e
-7

 * x

The second improvement was to mark all

the primes within a specific block size

before moving on to the next block. The

assumption is that keeping the block within

cache allows the marking to happen much

quicker. A separate action was taken to

identify the block size on the CoGrid

machine, this is discussed in the next

section. The timing runs using 1 processor

showed an initial price – but as N increased,

the improvements were dramatic. Using the

fit function, the resulting equation was

f(x) – 1.26e
-7

 * x

The last required improvement was to

reduce the amount of memory each

processor by half by only computing the odd

primes. The assumption is that the bulk of

the time of the algorithm is doing this

marking, reducing this work by half should

result in a reduction in time by a similar

percentage. The resulting algorithm bears

this out:

f(x) = .63e
-7

 * x

Example lab report 10/23/2013 Page 3

Computing the optimal block size

To find the optimal block size used in the

third program, a separate action was taken

by keeping P=2 and N = 100M. The block

size was then alternated from 1K to 128K.

Finding the optimal block size

(shown with logscale y 2)

I plotted the data using logscale y 2, because

I chose this progression when I performed

the testing. By examining the above graph, I

chose a block size of 32K to use for the rest

of the assignment.

Increasing the number of processors

Once the algorithms had been implemented

and tuned – a series of run was then made

keeping a block size of 32K and N = 100M

varying the number of processors. Once

again – each run included each of the

improvements and was made a total of 10

times. The resulting runs had their average

taken, the outliers removed, and the average

recomputed.

Varying number of processors from 1 to 14

This graph matches the assumptions

identified initially – each improvement

decreases the time required to complete the

run – and the resulting graph shows the

typical a/x+b equation. I broke out the

initial version and the final version to

perform the fit function; these are shown in

the below graph.

Version 1 and 4 with N=100M

The two resulting equations showed:

Version 1 – f(x) = 43.5 / x

Version 4 – f(x) = 5.8 / x

This represents an improvement of 7.5 times

after applying the improvements.

Example lab report 10/23/2013 Page 4

Additional tweak

I made two additional tweaks to the program

to try to improve the times – the first was to

provide better load balancing by only

allocating memory for the memory from √N

to N – since the processors are computing

the first √N primes as a part of the

algorithm. The second tweak was to apply

the same improvement to the computation of

the primes that was applied in the fourth

version – only compute the odd primes.

The assumption I made before making them

was there should be a slight increase in the

performance – but it wouldn’t be much in

the overall scheme of things. Both of these

improvements only affect the computation

of √N primes – a very small percentage of

the overall computation.

Little change after final tweak

Using the comparison between version 4 and

the additional improvements, I ran each of

the computations from 1 to 14 processors

keeping N at 100M. As you can see from

the above graph – little, if any, improvement

was realized.

Conclusion

Each of the improvements provided the

expected improvements – the most dramatic

being the implementation of the tiling. For

smaller N and a block size of 32K, the

results of the tiling were not seen until N

became larger – but in the runs of N=100M,

the improvement was greatly increased.

Eliminating the communication provided a

moderate improvement – even with

replacing it with a set of work – and

reducing the amount of work each processor

had to do by half reduced the running time

by half. Improvements to the √N

computation provided little improvement

and probably aren’t worth the extra effort of

programming unless the effort is small (as

these were).

Overall conclusion – the improvements

provided the desired improvements but each

generated corner cases that made the

programming more problematic.

Discussion of block data decomposition

After performing exercise 5.2 per the

instructions in the homework assignment,

we were to compare and contrast the two

methods. Both methods compute N/P and

assign these to each of the processors, the

first method assigns the leftovers to the

lower id number processors, the second

scatters them out among the processors.

The major difference between the two is the

ease of computation of the size and/or index

into the address space of each processor.

The first method has to identify how many

lower id processors were assigned an

additional space each time where the second

just says the first element within the address

space of each processor is ID * N / P. Since

this computation would be done each and

every time an element is accessed – savings

in computation steps for the second method

is favorable.

